Tension Points: A Theory & Evidence on Migration in Brexit

University of BRISTOL ljwolf.org/post/cdrc-brexit/

Levi John Wolf Bristol Spatial Modelling Group 18 April 2018

An ESRC Data Investment

Data challenge!

THE CHALLENGE PROMPT ITS IMPLICIT THEORY TWO MEASURES Bregman divergences Direct rate of changes PRELIMINARY RESULTS

"High numbers of migrants don't bother Britons

high rates of change do"

Get off my lawn or I'll leave the EU

"High numbers of migrants don't bother Britons

high rates of change do"

The real theory

All non-UK born are "migrants," but:

"Change" implies people who are new/different Naturalization + within-UK migration means "old" Britons might still move around, & small communities make this sizeable.

Neither examines the "volatility" of the population mix

"High numbers of migrants don't bother Britons

high rates of change do"

The real theory about people

Change of community identity: specific tension points No one remembers the old pub or the shop before the Tescos I don't know my neighbors anymore My neighbors aren't like me; they Celebrate different holidays Go to a different church (or don't go at all) Have hard-to-pronounce names

"High numbers of migrants don't bother Britons

high rates of change do"

Tension Points: real theory for places \rightarrow **people**

Non-UK born population ("not like me") Migrants from outside the UK (new to Britain) Migrants within the UK (new to community) Population structure volatility (new community)

high rates of change do"

Separate the points

Non-UK born population ("not like me") Direct effect & year-on-year change obtained/derived from APS

Separate the points: not like me

Migrants from outside the UK (new to Britain) Migrants within the UK (new to community)


```
Local Area Migration Indicators,
```

Since 2004:

- to LA from outside UK
- \rightarrow to LA from within UK
 - from LA to somewhere outside UK
- → from LA to somewhere else within UK (among other measurements)

Separate the points: newcomers

Migrants from outside the UK (new to Britain) Migrants within the UK (new to community)

Office for National Statistics

Dataset:

Local Area Migration Indicators,

Since 2004:

- to LA from outside UK
- \rightarrow to LA from within UK
- → from LA to somewhere outside UK
 - from LA to somewhere else within UK

Internal & External

Separate the points: newcomers

Migrants from outside the UK (new to Britain) Migrants within the UK (new to community)

$$net_{t} = \frac{(inflow_{t} - outflow_{t})}{population_{t}}$$

Average *net*_t from 2011 to 2016 for Internal & External

Separate the points: newcomers

IN GENERAL:

Internal leave London, head for the South

External migrants go exclusively London

-2.5

Average Net Immigration Flow $net_t = \frac{Inflow_t - Outflow_t}{Population_t}$ 0.5 -0.5 0.0 0.5 -0.5 0.0 1.0 -1.5 -1.0 1.5 1.0 1.5 2.0 2.5 3.0 3.5 Net Loss Net Gain Net Loss Net Gain

Migrants from outside the UK (new to Britain) Migrants within the UK (new to community) Non-UK born population ("not like me")

Population structure volatility (new community)

Migrants from outside the UK (new to Britain) Migrants within the UK (new to community) Non-UK born population ("not like me")

Population structure volatility (new community)

We do a slight aggregation on these second-level ethnicity categories. We then aggregate by 2011 LSOA (SOA for NI, Data Zones for Scotland). Category populations less than 5 are set to 0. The results are then divided by the total population and rounded to the nearest 0.005 (i.e. 0.5%).

Our aggregated ethnicity categories used are (with codes used in the data files):

- WBR White: British (including English/Welsh/Scottish/Northern Irish)
- WIR White: Irish
- WAO White: Any Other
- ABD Asian/Asian British: Bangladeshi
- ACN Asian/Asian British: Chinese
- AIN Asian/Asian British: Indian
- APK Asian/Asian British: Pakistani
- AAO Asian/Asian British: Any Other
- BAF Black/Black British: African
- BCA Black/Black British: Caribbean
- OXX Any Other Ethnic Group (including Mixed; Black/Black British: Any Other; Arab; All Other Ethnicities; &c.)

We do a slight aggregation on these second-level ethnicity categories. We then aggregate by 2011 LSOA (SOA for NI, Percentage breakdowns⁵ are set to 0. The results are then divivolatility

11 ethnic categories

Aggregated to LSOA

Since 1998

- AIN Asian/Asian British: Indian
- APK Asian/Asian British: Pakistani
- AAO Asian/Asian British: Any Other
- BAF Black/Black British: African
- BCA Black/Black British: Caribbean
- OXX Any Other Ethnic Group (including Mixed; Black/Black British: Any Other; Arab; All Other Ethnicities; &c.)

Separate the points: structural change

At local authority In the run-up to Brexit

Percentage breakdowns 5 - ? . Provide the second level ethnicity categories. We then aggregate by 2011 LSOA (SOA for NI)

In ethnic mix

At local authority

In the run-up to Brexit

11 ethnic categories

Aggregated to LSOA

Since 1998 —

- AIN Asian/Asian British: Indian
- APK Asian/Asian British: Pakistani
- AAO Asian/Asian British: Any Other
- BAF Black/Black British: African
- BCA Black/Black British: Caribbean
- OXX Any Other Ethnic Group (including Mixed; Black/Black British: Any Other; Arab; All Other Ethnicities; &c.)

Percentage breakdowns 5 - ? - Volatility Volatility

lack British: Any Other; Arab; All Other Ethnicities; &c.)

We do a slight aggregation on these second-level ethnicity categories. We then aggregate by 2011 LSOA (SOA for NI, Percentage breakdowns 5 are set to ? The results are the div Volatility

How to measure the magnitude of total change from Year 2 to Year 1?

lack British: Any Other; Arab; All Other Ethnicities; &c.)

Percentage breakdowns — → ? → ► Volatility

Structure and information in spatial segregation How to measure the magnitude of

total change from Year 2 to Year 1?

Philip S. Chodrow

PNAS October 31, 2017. 114 (44) 11591-11596; published ale Sof private by S2117 CAL https://doi.org/10.1073/pnas.1708201114

Edited by Michael F. Goodchild, University of California, Santa Dan / ERGENDER 11, 2017 (received for review May 17, 2017)

Percentage breakdowns →? → Volatility

Fraction of population in category i = 1, 2, ..., k in time t

Percentage breakdowns — → ? → → Volatility

 $p_{1}^{t} p_{1}^{t} p_{2}^{t} p_{2}^{t} p_{2}^{t} p_{2}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{$

Percentage breakdowns —∧? → Volatility

 $p_{1}^{t} p_{2}^{t} p_{2}^{t} p_{2}^{t} p_{2}^{t} p_{2}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{1}^{t} p_{2}^{t} p_{1}^{t} p_{$ - 6

$$p_1^{t+1}, p_{2'}^{t+1}, p_k^{t+1} =$$

and again in time
$$t+1$$

Percentage breakdowns →? → Volatility

$$p_1^{t+1}, p_2^{t+1}, \dots, p_k^{t+1} =$$

Divergence *D* is a function: $D(h_t \parallel h_{t+1}) = m$ Where $m \ge 0$ And m = 0 iff $h_t = h_{t+1}$

Percentage breakdowns →? → Volatility

 $\begin{array}{c} h_{2011} \\ h_{2012} \\ h_{2013} \\ h_{2014} \\ p_{2014} \\ p_{2015+1} \\ h_{2016} \\ p_{2016} \\ p$

Divergence D is a function: $D(h_t \parallel h_{t+1}) = m$ Where $m \ge 0$ And m = 0 iff $h_t = h_{t+1}$

Percentage breakdowns →? → Volatility

Divergence D is a function: $D(h_t \parallel h_{t+1}) = m$ Where $m \ge 0$ And m = 0 iff $h_t = h_{t+1}$

Percentage breakdowns →? ► Volatility

Magnitude of yearly change in population mix over the entire population distribution. i.e. the volatility of pop mix!

Statistical Divergences

*m*₂₀₁₂

*m*₂₀₁₃

*m*₂₀₁₄

*m*₂₀₁₅

*m*₂₀₁₆

- → Kullback-Leibler (KL)
- → Mahalanobis Distance
- → Wasserstein/Earth Mover's Distance

(NOTE: A "divergence" can be asymmetric, so $D(h_t \parallel h_{t+1}) \neq D(h_{t+1} \parallel h_t)$ but any "distance" usually implies a metric, which must be symmetric)

- → Kullback-Leibler (KL)
 → Mahalanobis Distance
- → Wasserstein/Earth Mover's Distance

$$\sum_{j=1}^{k} |p_{j}^{t+1} - p_{j}^{t}| = \text{EMD}(h_{t} \parallel h_{t+1})$$

(NOTE: A "divergence" can be asymmetric, so $D(h_t \parallel h_{t+1}) \neq D(h_{t+1} \parallel h_t)$ but any "distance" usually implies a metric, which must be symmetric)

- → Kullback-Leibler (KL)
 → Mahalanobis Distance
- → Wasserstein/Earth Mover's Distance

 $\sum_{j} |p_{j}^{t+1} - p_{j}^{t}| = \text{EMD}(h_{t} \parallel h_{t+1})$ Change in % category between years

- → Kullback-Leibler (KL)
 → Mahalanobis Distance
- → Wasserstein/Earth Mover's Distance

 $\sum_{j} |p_{j}^{t+1} - p_{j}^{t}| = \text{EMD}(h_{t} \parallel h_{t+1})$ **Absolute Change in % category between years**

- → Kullback-Leibler (KL)
 → Mahalanobis Distance
- → Wasserstein/Earth Mover's Distance

 $\sum_{j=1}^{n} |p_{j}^{t+1} - p_{j}^{t}| = EMD(h_{t} \parallel h_{t+1})$ Absolute Change in % category between years summed over all categories

→ Kullback-Leibler (KL)
→ Mahalanobis Distance

1

→ Wasserstein/Earth Mover's Distance

$$\sum_{j=1}^{n} |p_{j}^{t+1} - p_{j}^{t}| = \text{EMD}(h_{t} \parallel h_{t+1})$$

Total probability mass that must be moved.

IN GENERAL: Cities are more volatile

Not all cities are equally volatile (e.g. **Exeter** vs. **Bristol**)

LA average rescaled EMD

No Monocausal Explanations

→ Also control for:

- Education level: no qualifications & uni degree %
- Change in % manufacturing since 2011
- White Unemployment
- Age distributions (youngs & old only)
- Number of Votes cast (large LAs may be more Remain)

Varying intercept/Region RE model:

$$\begin{split} y &= \mathrm{R}\alpha_{J} + \mathrm{R}\zeta + X\beta + \varepsilon \\ \zeta &\sim \mathrm{N}(0,\tau^{2}) \\ \varepsilon &\sim \mathrm{N}(0,\sigma^{2}) \end{split}$$

Varying intercept/Region RE model:

$y = R\alpha_{J} + R\zeta + X\beta + \varepsilon$ $\zeta \sim N(Typical data \& marginal effects for N LAs$ $\varepsilon \sim N(0, \sigma^{2})$

Varying intercept/Region RE model:

$y = R\alpha_{J} + R\zeta + X\beta + \varepsilon$ 5 Aggregation matrix from NLAs to J regions $\varepsilon \sim N(0, \sigma^{2})$

Varying intercept/Region RE model:

$$y = R\alpha_{J} + R\zeta + X\beta + \varepsilon$$

$$\zeta \sim N(0,\tau^{2})$$
Regionally-unique intercept
$$\varepsilon \sim N(0,\sigma^{2})$$

% Uni Degree -.7631 -.8402 -.6848-10.72 Δ % Manuf. Emp. -.0751 -.2208 .0698 -.2628 White Unemp % .2076 -.0488 .4662 .6019 % 16 to 19 -.7749 -.4353 -.1051-.7942 % 20 to 24 -.3908 -.6366 -.1410 -1.151 % 50 and Up -.0252 -.1283 .0756 -.2623 -.0270 Votes Cast -.0164 -.0057-.8001 $R^2 = .81$

Median

-.0629

2.5%

-.2627

97.5%

.1392

ΔIQR

-.2516

Parameter Estimates: Confounders/Controls

58

% No Qualifications

	Median	2.5%	97.5%	ΔIQR
% No Qualifications	0629	2627	.1392	2516
% Uni Degree	7631	8402	6848	-10.72
Δ% Manuf. Emp.	0751	2208	.0698	2628
White Unemp %	.2076	0488	.4662	.6019
% 16 to 19	4353	7749	1051	7942
% 20 to 24	3908	6366	1410	-1.151
% 50 and Up	0252	1283	.0756	2623
Votes Cast	0164	0270	0057	8001
$R^2 = 81$				

Parameter Estimates: Confounders/Controls

58

% Leave (Baseline)

Median 2.5% 97.5% ΔIQR % No Qualifications .1392 -.0629 -.2627 -.2516 % Uni Degree -.7631 -.8402 -.6848-10.72 Δ % Manuf. Emp. -.0751 -.2208.0698 -.2628 White Unemp % .2076 -.0488 .4662 .6019 % 16 to 19 -.4353 -.7749 -.1051-.7942 % 20 to 24 -.3908 -.6366 -.1410 -1.151 % 50 and Up -.0252 -.1283 .0756 -.2623 Votes Cast -.0164 -.0270 -.0057-.8001 $R^2 = .81$

Parameter Estimates: Confounders/Controls

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in ↑	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in ↑	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: Change effects

Total non-UK is not strongly associated.

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in \uparrow	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in \uparrow	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: The Economist's Empirics

Change in non-UK, regardless of ethnicity, is strongly associated Leave.

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in ↑	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in ↑	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: The Economist's Empirics

More migrants from within the UK is associated with Leave.

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in \uparrow	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in \uparrow	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: Migration from inside UK

More migrants from outside the UK is associated with Remain, not Leave!

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in \uparrow	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in ↑	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: Migration from outside UK

Volatility is weak, 95-99% of posterior is below 0 during re-simulation.

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in ↑	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in ↑	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: Migration from outside UK

- not like me

- L RoC not like me
- not like me
- L RoC not like me

Rw Volatility

- **R** New to country
- L New to community

	Median	2.5%	97.5%	ΔIQR
% Ethnic Non-UK born	.0842	0505	.2249	.4801
Change in ↑	1.249	.3624	2.164	.4538
% White Non-UK born	.0639	0977	.2256	.3162
Change in ↑	1.572	.5323	2.638	.7858
Volatility	8064	-1.640	0.011	7724
Mean Net External	-1.562	-3.125	0460	4720
Mean Net Internal	1.794	.2091	3.298	1.081

Parameter Estimates: Change effects

"High numbers of migrants don't bother Britons, high rates of change

in their community's national backgrounds or in the people new to their community from elsewhere in the UK

do."

The Economist correct on some points

But, high rates of change in other types of migration & social structures, like

in the community's racial/ethnic mix or in the people new to the country

may actually do the opposite.

The Economist correct on some points

QUESTIONS ON:

Tension Points:

A Theory & Evidence on Migration in Brexit

University of BRISTOL ljwolf.org/post/cdrc-brexit/

Levi John Wolf Bristol Spatial Modelling Group 18 April 2018

An ESRC Data Investment

Data challenge!